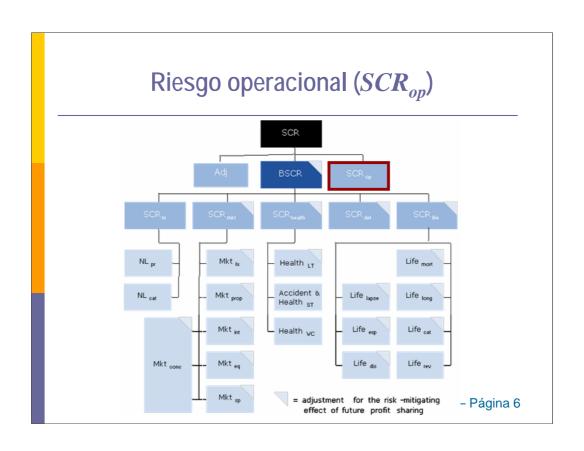

Solvencia II

Francisco Cuesta Aguilar

Coordinador de Inspección del Grupo de Vida francisco.cuesta@meh.es

SCR Enfoque Estándar QIS4

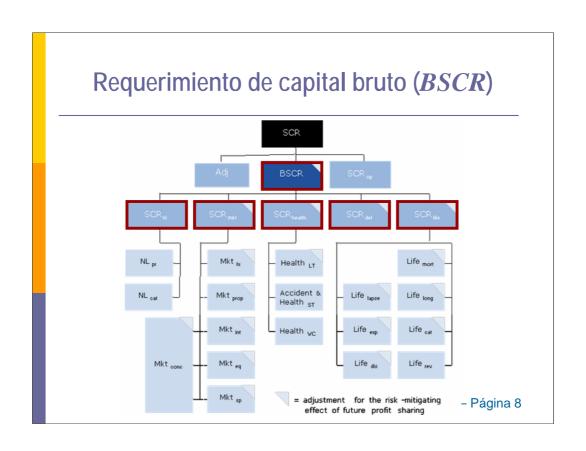


Requerimientos de capital (SCR)

• *SCR*: requerimiento de capital:

$$SCR = BSCR - Adj + SCR_{op}$$

- BSCR: requerimiento de capital bruto
- Adj: ajuste por absorción de riesgos de PB (Adj_{FDB}) e impuestos diferidos (Adj_{TD})
- SCR_{op} : riesgo operacional



Riesgo operacional (SCR_{op})

 Riesgo de incurrir en pérdidas por fallos en los procesos internos, personal, sistemas, o eventos externos

$$SCR_{op} = \min \begin{cases} 0.3 \cdot BSCR; \\ \max \begin{cases} 0.03 \cdot Earn_{life} + 0.02 \cdot Earn_{nl} + 0.02 \cdot Earn_{h}; \\ 0.003 \cdot TP_{life} + 0.02 \cdot TP_{nl} + 0.002 \cdot TP_{h} \end{cases} + 0.25 \cdot Exp_{ul}$$

- Earn_{life}: primas brutas de V (excluido unit-linked)
- $Earn_{nl}$: primas brutas de NV
- Earn_h: primas brutas de salud
- TP_{life}: PT brutas de V (excluido unit-linked)
- TP_{nl}^{nl} : PT brutas de NV
- TP_h : PT brutas de salud
- $\mathit{Exp}_{\mathit{ul}}$ gastos anuales brutos en unit-limiteigo Cuesta Aguilar Página 7

Requerimiento de capital bruto (BSCR)

- Cálculo a partir de los requerimientos de capital de los siguientes riesgos:
 - Riesgo de mercado (SCR_{mkt})
 - Riesgo de contrapartida (SCR_{def})
 - Riesgo de V (SCR_{life})
 - Riesgo de salud (SCR_{health})
 - Riesgo de NV (SCR_{nl})
- Vector de requerimientos de capital ([SCR] de dimensión (1x5))

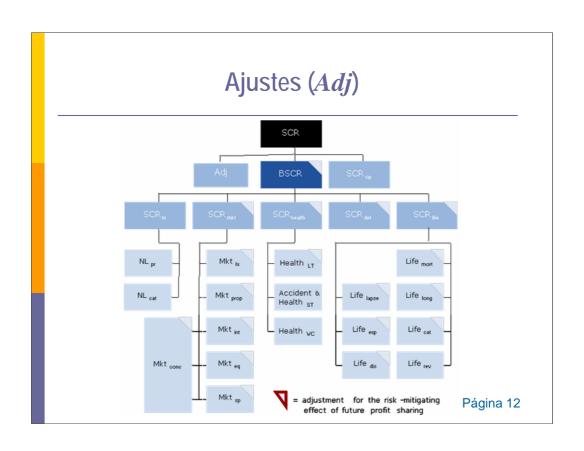
Requerimiento de capital bruto (BSCR)

 Matriz de correlaciones entre los diferentes riesgos ([CorrSCR], de dimensión (5x5))

CorrSCR=	SCR _{mkt}	SCR _{def}	SCR _{life}	SCR _{health}	SCRnI
SCR _{mkt}	1				
SCR _{def}	0.25	1			
SCR _{life}	0.25	0.25	1		
SCR _{health}	0.25	0.25	0.25	1	
SCR _{nl}	0.25	0.5	0	0,25	1

Requerimiento de capital bruto (BSCR)

• Requerimiento de capital total:


$$BSCR = \sqrt{[SCR] \cdot [CorrSCR] \cdot [SCR]}$$

• Si existiera independencia (correlación 0):

$$BSCR = \sqrt{SCR_{mkt}^2 + SCR_{def}^2 + SCR_{life}^2 + SCR_{health}^2 + SCR_{nl}^2}$$

 Si existiera dependencia perfecta (correlación 1), es decir, en ausencia de diversificación:

$$BSCR = SCR_{mkt} + SCR_{def} + SCR_{life} + SCR_{health} + SCR_{nl}$$

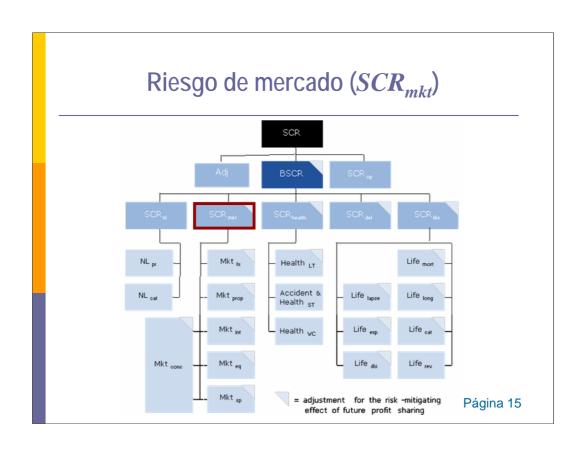
Ajustes (Adj)

Ajuste por PB (Adj_{FDB})

- Cálculo de los requerimientos de capital para riesgos individuales bajo 2 hipótesis:
 - No se puede variar la PB en caso de pérdidas (SCR)
 - Sí se puede variar (*nSCR*)
- Cálculo de BSCR y nBSCR, a partir de los módulos de riesgo (SCR y nSCR) y las matrices de correlación
- FDB: PT de beneficios futuros discrecionales

$$Adj_{FDB} = \min(BSCR - nBSCR; FDB)$$

Método simplificado universal life de cálculo de BE:


$$Adj_{FDB} = 0.1 \cdot FDB$$
 Francisco Cuesta Aguilar – Página 13

Ajustes (Adj)

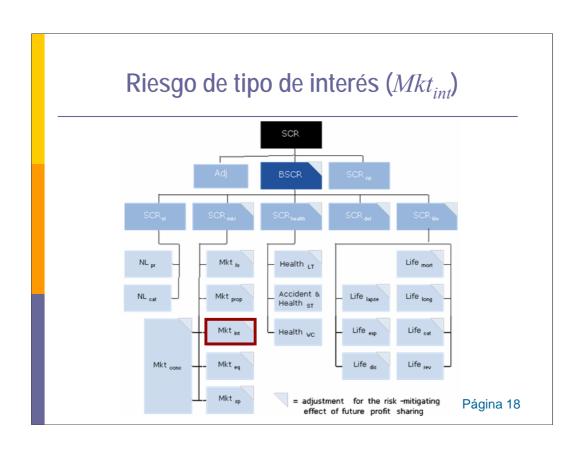
Ajuste por impuestos diferidos (Adj_{DT})

 $Adj_{DT} = \Delta DeferredTaxes | SCRshock$

- *∆DeferredTaxes*: valor absoluto de la reducción de impuestos diferidos

Riesgo de mercado (SCR_{mkt})

- 6 módulos de riesgo, para cada uno de los cuales se debe calcular sus requerimientos de capital:
 - Riesgo de tipo de interés (Mkt_{int})
 - Riesgo de acciones (Mkt_{eq})
 - Riesgo de inversiones inmobiliarias (Mkt_{prop})
 - Riesgo de spread (Mkt_{sp})
 - Riesgo de concentración (Mkt_{conc})
 - Riesgo de tipo de cambio (Mkt_{fx})
- Se construye el vector de riesgo de mercado ([Mkt]), de dimensión (1x6)


Riesgo de mercado (SCR_{mkt})

• Matriz de correlaciones ([CorrMkt], de dimensión (6x6)):

CorrMkt	Mkt _{int}	Mkt _{eq}	Mkt _{prop}	Mkt _{sp}	Mkt _{conc}	Mkt _{fx}
Mkt _{int}	1					
Mkt _{eq}	0	1				
Mkt _{prop}	0.5	0.75	1			
Mkt _{sp}	0.25	0.25	0.25	1		
Mkt _{conc}	0	0	0	0	1	
Mkt _{fx}	0.25	0.25	0.25	0.25	0	1

• Requerimiento de capital por riesgo de mercado:

$$SCR_{mkt} = \sqrt{[Mkt] \cdot [CorrMkt] \cdot [Mkt]}$$

Riesgo de tipo de interés (Mkt_{int})

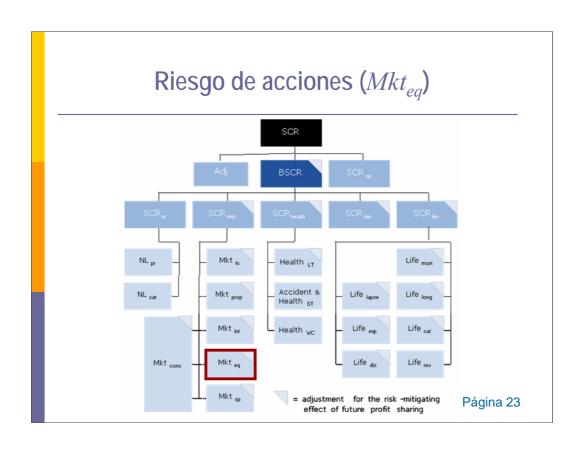
- Existe riesgo de interés cuando el VA de los activos menos el VA de los pasivos es sensible a los cambios de la ETTI
- Sólo se aplica a activos y pasivos sensibles al tipo de interés (renta fija, pasivos de seguro, estructurados, derivados sobre renta fija, etcétera)
- Se consideran instrumentos de cobertura
- Excluida la parte de unit-linked
- 2 métodos:
 - General
 - Simplificado

Riesgo de tipo de interés (Mkt_{int})

- Método general:
- Máximo entre 0 y el obtenido para 2 escenarios (subida y bajada ETTI), bruto de PB:

$$Mkt_{\text{int}}^{up} = \max \left\{ \begin{matrix} 0 \\ VarVAN | Esc\Delta i \end{matrix} \right\}$$

$$Mkt_{\text{int}}^{down} = \max \left\{ \begin{matrix} 0 \\ VarVAN | Esc\nabla i \end{matrix} \right\}$$


Idem, neto de PB

Riesgo de tipo de interés (Mkt_{int})

Maturity t (years)	1	2	3	4	5	6	7
relative change s ^{up} (t)	0,94	0,77	0,69	0,62	0,56	0,52	0,49
relative change s ^{down} (t)	-0,51	-0,47	-0,44	-0,42	-0,40	-0,38	-0,37
Maturity t (years)	8	9	10	11	12	13	14
relative change s ^{up} (t)	0,46	0,44	0,42	0,42	0,42	0,42	0,42
relative change s ^{down} (t)	-0.35	-0.34	-0.34	-0.34	-0.34	-0.34	-0.34
Maturity t (years)	15	16	17	18	19	20+	
relative change s ^{up} (t)	0,42	0,41	0,40	0,39	0,38	0,37	
relative change s ^{down} (t)	-0.34	-0.33	-0.33	-0.32	-0.31	-0.31	

Riesgo de tipo de interés (Mkt_{int})

- Método simplificado:
- Si los flujos de caja no son sensibles al tipo de interés (ausencia de opciones implícitas)
- Activos, PT-NV y otros pasivos (no aplicable a PT-V)
- Escenarios de variaciones paralelas: -40% y +55%

- Riesgo de pérdidas por caída del precio de las acciones
- 2 categorías:
 - Global (incluye Europa)
 - Otros (emergentes, no listados, y otras alternativas de inversión como "hedge funds" o SPVs)
- 2 metodologías:
 - General
 - Simplificada
- Se consideran instrumentos de cobertura
- Excluida la parte de unit-linked

• Método general:

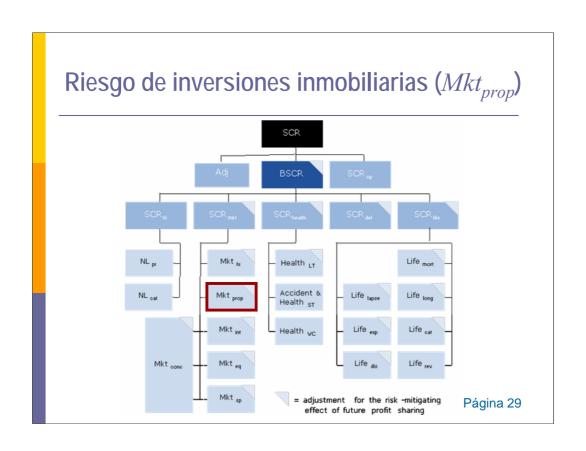
$$Mkt_{eq,i} = \max[(\Delta NAV | escenario_i); 0]$$

- *i*: índice de referencia
- *∆NAV*: cambio en *VAA-VAP*
- Mkt_{eq,i}: requerimiento de capital por riesgo de acciones de índice i
- Se analizan los siguientes escenarios:

	Global	Other
equity shock _i	32%	45%

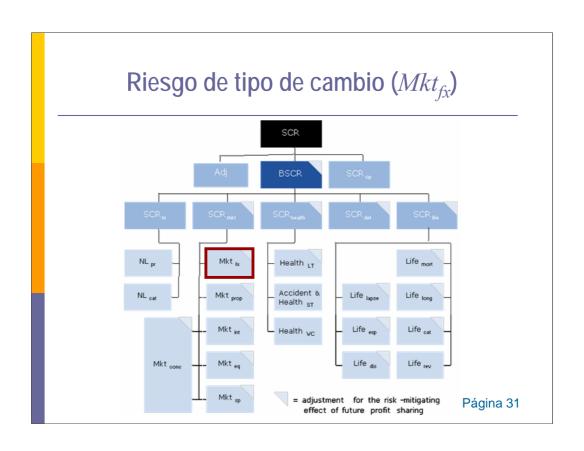
Correlaciones de índices:

CorrIndex=	Global	Other
Global	1	
Other	0.75	1

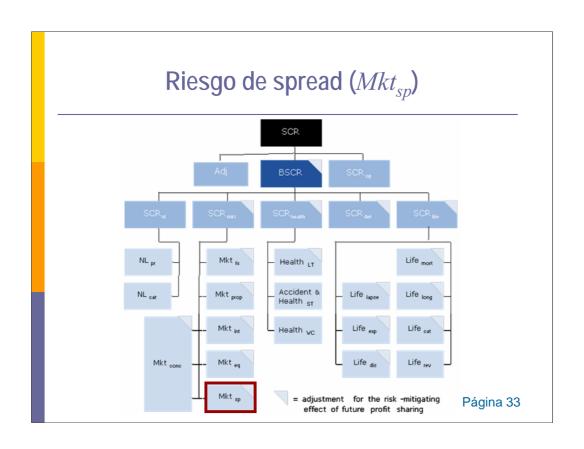

- Dampener Option:
- La probabilidad de que los índices de acciones incremente es pequeña-alta cuando el valor de partida es elevado-bajo
- Sólo se aplica al mercado global y cuando los pasivos vinculados tienen una duración igual o superior a 3 años
- 2 componentes: tendencia y cíclico
- Reduce el escenario de variación en función de la duración o permanencia en la entidad (estimado según la duración de las PT) así como el nivel del índice respecto al último año

Dampener Option (continuación):

$$Mkt_{eq,global} = VM_{global} \cdot \left[\alpha \cdot (F_k + G_k \cdot c) + (1 - \alpha) \cdot 32\%\right]$$


- Mkt_{eq,global}: SCR por riesgo de acciones de índice global
- VM_{global} : valor de mercado de acciones de índice global
- α: % de PT con duración igual o superior a 3 años
- c: componente cíclico (diferencia entres medias de valores del índice de últimos 10 días y últimos 250 días)

k: duración pasivos (años)	F_k	G_k	
3-5	29%	0,20	
5-10	26%	0,11	
10-15	23%	0,08	
+15 Franciso	22 mg	90,90₹9	juilar – Página 28


Riesgo de inversiones inmobiliarias (Mkt_{prop})

- Riesgo de pérdidas por caída del precio de los inmuebles
- Se consideran instrumentos de cobertura
- Excluida la parte de unit-linked
- Escenario de caída del 20% de la posición neta en inversiones inmobiliarias

Riesgo de tipo de cambio (Mkt_{fx})

- Riesgo de pérdidas por variaciones (incremento o disminución) del tipo de cambio
- Se consideran instrumentos de cobertura
- Excluida la parte de unit-linked
- Se reduce el escenario del 25% al 20% de la posición neta en todas las divisas distintas de la moneda local (según la posición más onerosa para la entidad)

Riesgo de spread (Mkt_{sp})

- Riesgo de activos debido a la volatilidad del spread de crédito sobre el interés libre de riesgo
- Complementa al riesgo de tipo de interés

Riesgo de spread (Mkt_{sp})

- Método general: bonos
- Se excluye la deuda pública (OCDE y EEE)

$$Mkt_{sp}^{bonds} = \sum_{i} MV_{i} \cdot m(dur_{i}) \cdot F(rating_{i}) + \Delta Liab_{ul}$$

- MV_i: exposición al riesgo de crédito i (valor de mercado)
- dur_i: duración corregida de exposición al riesgo de crédito i
- $m(dur_i)$: función de la duración:

$$m(dur_i) = \begin{cases} \max[\min(dur_i; 8); 1] & \textit{si rating}_i = BB \\ \max[\min(dur_i; 6); 1] & \textit{si rating}_i = B \\ \max[\min(dur_i; 4); 1] & \textit{si rating}_i \leq CCC \ \textit{o sin rating} \\ \max[dur_i; 1] & \textit{Francistic Cosson Aguilar - Página 35} \end{cases}$$

Riesgo de spread (Mkt_{sp})

- Método general: bonos (continuación)
- $\Delta Liab_{ul}$: impacto en PT unit-linked bajo escenario de variación igual a la pérdida de los restantes elementos
- F(rating_i): factor, según la calidad crediticia, proporcionado por el supervisor:

Rating _i	F(Rating _i)		
AAA	0.25%		
AA	0.25%		
А	1.03%		
BBB	1.25%		
BB	3.39%		
В	5.60%		
CCC	11.20%		
Unrated ⁵⁵	2%		

guilar – Página 36

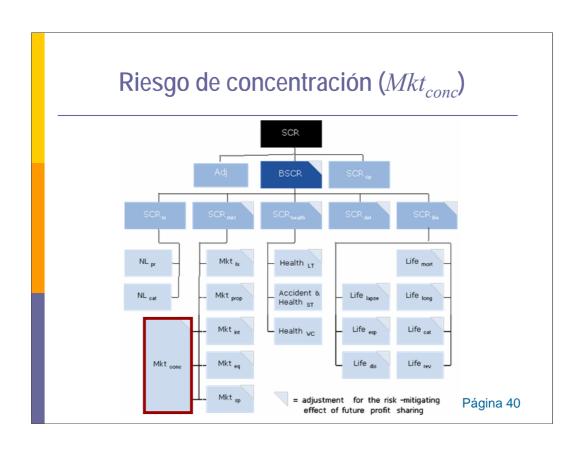
Riesgo de spread (Mkt_{sp})

- Método general: estructurados de crédito
- Se excluye la deuda pública (OCDE y EEE)

$$Mkt_{sp}^{struct} = \sum_{i} MV_{i} \cdot n(dur_{i}) \cdot G(rating_{i})$$

• $n(dur_i)$: función de la duración:

$$n(dur_i) = \begin{cases} \max[\min(dur_i; 5); 1] & si \ rating_i = BB \\ \max[\min(dur_i; 4); 1] & si \ rating_i = B \\ \max[\min(dur_i; 2, 5); 1] & si \ rating_i \le CCC \\ 1 & sin \ rating \\ \max[dur_i; 1] & en \ otro \ caso \end{cases}$$


Riesgo de spread (Mkt_{sp})

- Método general: estructurados de crédito (continuación)
- $F(rating_i)$: factor, según la calidad crediticia, proporcionado por el supervisor:

Ratingi	G(Rating _i)
AAA	2.13%
AA	2.55%
A	2.91%
BBB	4.11%
BB	8.42%
В	13.35%
CCC or lower	29.71%
Unrated ¹	100.00%

Riesgo de spread (Mkt_{sp})

- <u>Método general</u>: derivados de crédito
- Cambio en el valor del derivado más oneroso para la entidad bajo 2 escenarios:
 - Incremento del spread de crédito del 300%
 - Reducción del 75%

Riesgo de concentración (Mkt_{conc})

- Riesgo de acumulación de exposiciones con la misma contrapartida
- Exclusiones:
 - Inmuebles y participaciones en FII
 - Deuda pública (OCDE y EEE)
 - Participaciones bajo método de agregación-deducción
 - Depósitos bancarios <3m y >3M€ con rating mínimo AA
- Se acumulan las exposiciones del mismo grupo

Riesgo de concentración (Mkt_{conc})

 Se aplica en función del exceso de la inversión sobre un límite predeterminado según el rating de la contrapartida

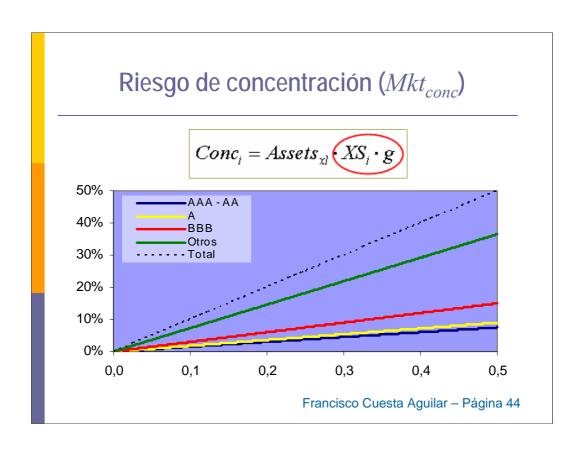
$$XS_{i} = \max \left\{ 0; \frac{E_{i}}{Assets_{xl}} - CT \right\}$$

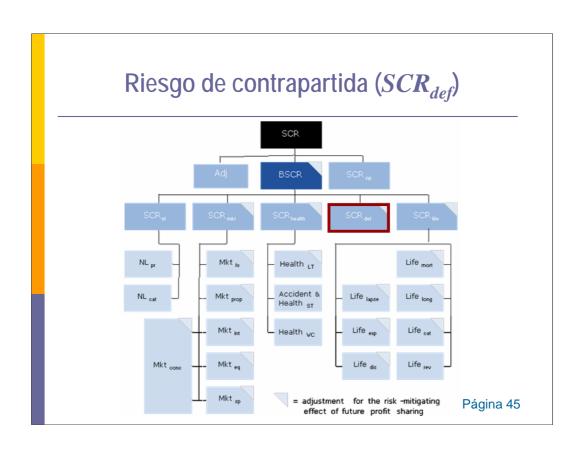
- XS_i: exceso de la exposición total al riesgo sobre el límite establecido, para la contrapartida i
- E_i : exposición neta total a la contrapartida i
- Assets_{xl}: total activos (excluidos unit-linked)
- *CT*: límite de concentración:

rating _i	СТ
AA-AAA	5%
А	5%
BBB	3%
BB or lower	3%

yuilar – Página 42

Riesgo de concentración (Mkt_{conc})


$$Conc_i = Assets_{xl} \cdot XS_i \cdot g_i + \Delta Liab_{ul}$$


- $Conc_i$: requerimiento de capital para contrapartida i
- g: parámetro según el rating:

rating	Credit Quality Step	G
AAA AA	1	0.15
A	2	0.18
BBB	3	0.30
BB or lower, unrated	4 - 6, -	0.73

- $\Delta Liab_{ul}$: impacto en PT unit-linked bajo escenario de variación igual a la pérdida de los restantes elementos
- Requerimiento de capital para riesgo concentración:

$$Mkt_{conc} = \sqrt{\sum_{i} Conc^{2}}$$
_i Francisco Cuesta Aguilar – Página 43

- Riesgo de default de contrapartida en contratos de reaseguro, derivados financieros y otros créditos
- El cálculo difiere según el nivel de concentración, medido a través del coeficiente de correlación R:
 - Si R = 0.5: Vasicek (nivel de confianza del 99.5%)
 - Si R = 1: probabilidad de default (PD)
 - Valores de *R* intermedios: interpolación lineal

- Cálculo para cada una de las 3 categorías: reaseguro, derivados y otros
- R: coeficiente de correlación, suponiendo una correlación base conservadora (R=0,5)

$$R = 0.5 + 0.5 \cdot H$$

- H: índice Herfindahl
- LGD_i: pérdida en caso de default de la contrapartida

$$H = \frac{\sum_{i} LGD_{i}^{2}}{\left(\sum_{i} LGD_{i}\right)^{2}}$$
Francisco Cuesta Aguilar – Página 47

• LGD reaseguro:

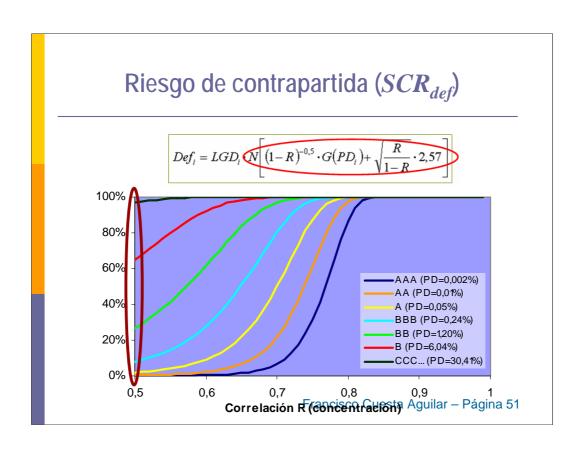
$$LGD = 0.5 \cdot \max \left(\text{Re } c + SCR_u^{gross} - SCR_u^{net} - Collateral; 0 \right)$$

- Rec: BE de PT-RC
- *SCR_u*: SCR por riesgo de suscripción (bruto y neto)
- *Collateral*: cobertura de pérdida por default de contrapartida
- *LGD* derivados:

$$LGD = 0.5 \cdot \max(MV + SCR_{Mkt}^{gross} - SCR_{Mkt}^{net} - Collateral;0)$$

- MV: valor de mercado del derivado
- SCR_{Mkt}: SCR por riesgo de mercado (bruto y neto)
- Collateral: cobertura de pérdida por default de contrapartida
- LGD otros: BE de otros crédifosnoisco Cuesta Aguilar Página 48

Cuando R es 0.5:


$$Def_i = LGD_i \cdot N \left[(1 - R)^{-0.5} \cdot G(PD_i) + \sqrt{\frac{R}{1 - R}} \cdot 2,57 \right]$$

- i: contrapartida
- Def_i : capital requerido para contrapartida i
- *N*: función de distribución normal estándar
- G: función inversa de distribución normal estándar

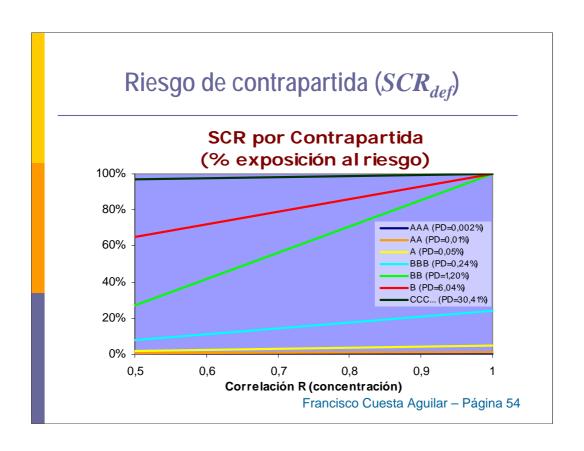
• PD_i : probabilidad de default de contrapartida i

Rating _i	Credit Quality Step	PDi
AAA	1	0.002%
AA	1	0.01%
А	2	0.05%
BBB	3	0.24%
ВВ	4	1.20%
В	5	6.04%
CCC or lower, unrated	6, -	30.41%

- Reaseguradores sin calificación:
 - Sometidos a Solvencia 2: clase 3
 - No sometidos a Solvencia 2: clase 6 Francisco Cuesta Aguilar Página 50

Cuando R es 1:

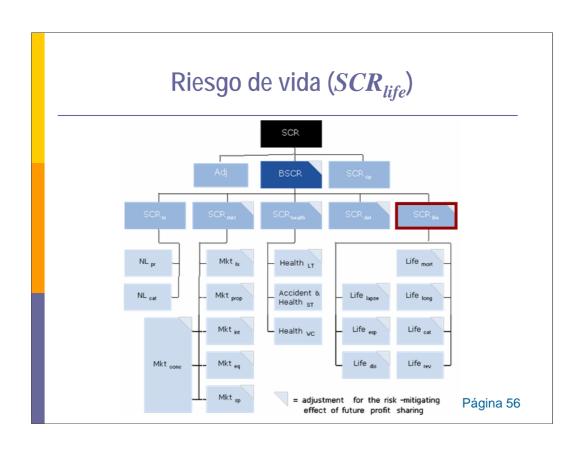
- Inconsistencia de Vasicek
- Nueva expresión:


$$Def_i = LGD_i \cdot \min[(100 \cdot PD_i);1]$$

Resultados:

AAA	AA	A	BBB	BB	В	CCC
0,20%	1,00%	5,00%	24,00%	100,00%	100,00%	100,00%

Cuando R toma valores entre 0,5 y 1:


Interpolación lineal

$$SCR(\%)_{AAA} = 0,00061244 + 0,00277513 \cdot R$$

 $SCR(\%)_{AA} = 0,00364112 + 0,01271776 \cdot R$
 $SCR(\%)_{A} = 0,01886950 + 0,06226099 \cdot R$
 $SCR(\%)_{BBB} = 0,07890486 + 0,32219029 \cdot R$
 $SCR(\%)_{BB} = 0,26887022 + 1,46225957 \cdot R$
 $SCR(\%)_{B} = 0,64868913 + 0,70262173 \cdot R$
 $SCR(\%)_{CCC} = 0,96790375 + 0,06419251 \cdot R$

Riesgo final de contrapartida

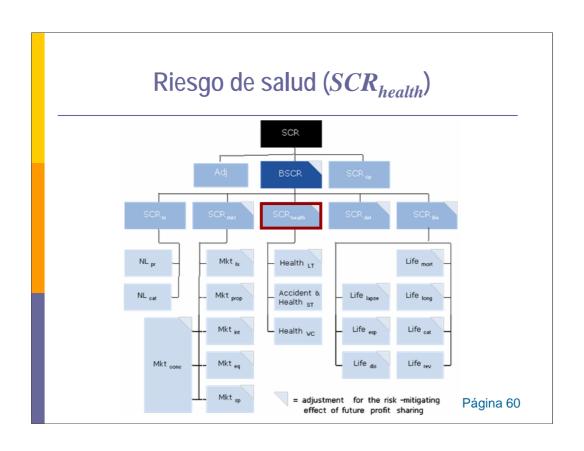
$$SCR_{def} = \sum_{i} Def_{i}$$

Riesgo de vida (SCR_{life})

- Incluye 7 riesgos, para cada uno de los cuales se debe calcular sus requerimientos de capital:
 - Riesgo de mortalidad ($Life_{mort}$)
 - Riesgo de supervivencia ($Life_{long}$)
 - Riesgo de incapacidad-morbilidad ($Life_{dis}$)
 - Riesgo de rescate ($Life_{lapse}$)
 - Riesgo de gastos ($Life_{exp}$)
 - Riesgo de revisión ($Life_{rev}$)
 - Riesgo de catástrofe ($Life_{CAT}$)
- Se construye el vector de riesgo de V ([Life]), de dimensión (1x7)

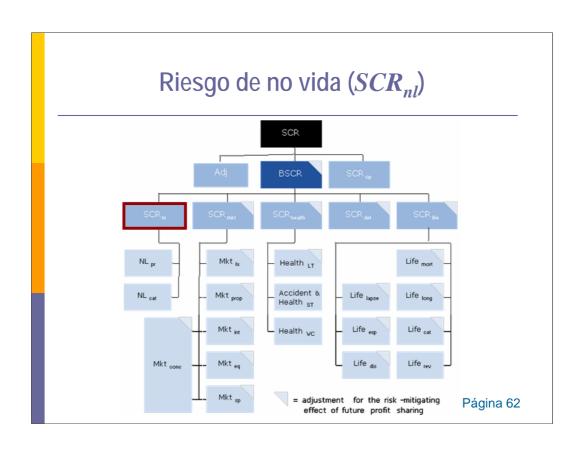
Riesgo de vida (SCR_{life})

Matriz de correlaciones ([CorrLife], de dimensión (7x7)):


CorrLife	Lifemon	Lifelong	Life _{dis}	Life _{lapse}	Lifeexp	Liferev	Life _{CAT}
Lifemort	1						
Lifelong	-0.25	1					
Life _{dis}	0.5	0	1				
Lifelapse	0	0.25	0	1			
Lifeexp	0.25	0.25	0.5	0.5	1		
Liferev	0	0.25	0	0	0.25	1	
Life _{CAT}	0	0	0	0	0	0	1

• Requerimiento de capital por riesgo de V:

$$SCR_{life} = \sqrt{[Life] \cdot [CorrLife] \cdot [Life]}$$
Francisco Cuesta Aguillar – Página 58


Riesgo de vida (SCR_{life})

RIESGO	CONCEPTO	ESCENARIO
Mortalidad	Incremento de mortalidad en seguros de fallecimiento	+10% permanente de tasa de fallecimiento en cada edad
Supervivencia	Incremento de supervivencia en seguros de supervivencia	-25% permanente de tasa de fallecimiento en cada edad
Incapacidad- morbilidad	Incremento de tasa de incapacidad-morbilidad	+25% permanente de tasa de incapacidad (año 1 +35%)
Rescate	Desviaciones en rescates estimados	Mayor de 3 escenarios: VR > PM (+50% tasa de rescate) VR < PM (-50% tasa de rescate) Riesgo masa: 30% suma (VR – PM)
Gastos	Incremento de gastos	+10% permanente de gastos y +1% inflación (recuperación del 75% de gastos ajustables)
Revisión	Revisiones imprevistas de pagos anuales (indexados)	+3% de pagos anuales durante el período residual
Catástrofe	Siniestralidad en eventos catastróficos	+0,15% absoluto de tasas de fallecimiento y morbilidad el año 1

Riesgo de salud (SCR_{health})

- Riesgo en el seguro de salud
- Incluye 3 riesgos, para cada uno de los cuales se debe calcular sus requerimientos de capital:
 - Riesgo de salud a largo plazo (idem V) ($Health_{LT}$)
 - Riesgos de salud y accidentes a corto plazo (idem NV) $(Accident\&Health_{ST})$
 - Riesgo de compensación al trabajador (idem V-NV) $(Health_{WC})$

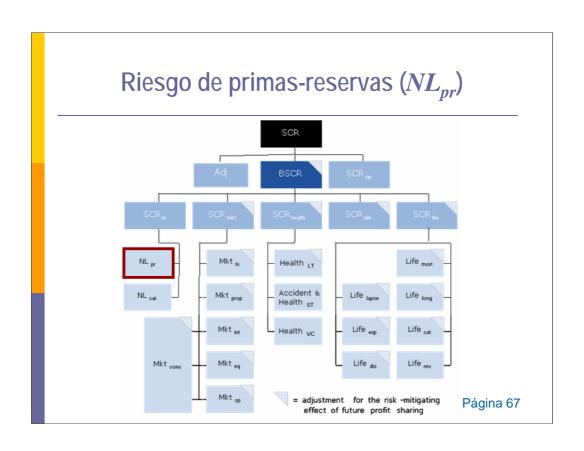
• En seguro directo:

1	Motor, third-party liability	RC vehículos terrestres
2	Motor, other classes	Otros, vehículos terrestres
3	Marine, aviation and transport	Marítimos, aéreos y transporte
4	Fire and other property damage	Incendios
5	Third-party liability	Otros, RC
6	Credit and suretyship	Crédito y caución
7	Legal expenses	Defensa jurídica
8	Assistance	Asistencia
9	Miscellaneous non-life insurance	Multirriesgos no vida

Reaseguro:

- Reaseguro proporcional: se consideran los mismos ramos que en seguro directo
- Reaseguro no proporcional: sólo se consideran 3 ramos:

10	Property business	Daños
11	Casualty business	Personales
12	Marine, aviation and transport business	Marítimos, aéreos y transporte


- Incluye 2 riesgos:
 - Riesgo de insuficiencia de las primas periodificadas: nuevo negocio y PPNC
 - Riesgo de insuficiencia de la PP: por cálculo erróneo o naturaleza estocástica de la siniestralidad

- Incluye 2 módulos riesgos, para cada uno de los cuales se debe calcular sus requerimientos de capital:
 - Riesgo de primas-reservas (NL_{pr})
 - Riesgo de catástrofe (NL_{CAT})
- Vector de riesgo de NV ([NL]), de dimensión (1x2)
- Matriz de correlaciones ([CorrNL], de dimensión (2x2)):

CorrNL=	NL_{pr}	NL _{CAT}
NLpr	1	
NL _{CAT}	0	1

Requerimiento de capital por riesgo de NV:

$$SCR_{nl} = \sqrt{[NL] \cdot [CapticNb] \cdot [NL] \cdot [CapticNb]}$$

- Diversificación geográfica:
 - Áreas: cada país del EEE, Suiza, resto de Europa, Asia (excluido Japón y China), Japón, China, Oceanía (excluido Australia), Australia, USA, Canadá, México, resto de Norte y Centro América, cada país de Sur América, y África
 - Índice de Herfindahl
 - Siempre que la entidad no tenga más del 95% de su actividad en una misma área geográfica

• Cálculo agrupado: $NL_{pr} = \left[\frac{\exp(2,57 \cdot \sqrt{\log(\sigma^2 + 1)})}{\sqrt{\sigma^2 + 1}} - 1\right] \cdot V$

• Variables: V, σ

- Fase 1: Medidas de riesgo (por ramos y áreas) y desviaciones (por ramos)
- $V_{(res,j,lob)}$: medida de riesgo de reservas del ramo y área

$$V_{(res,j,lob)} = PCO_{j,lob}$$

- PCO_{j,lob}: BE de la PP neta del ramo y área
- $V_{(prem,j,lob)}$: medida para riesgo de primas del ramo y área

$$V_{(prem, j, lob)} = \max \left[P_{j, lob}^{t, written}; P_{j, lob}^{t, earned}; 1,05 \cdot P_{j, lob}^{t-1, written} \right]$$

- $\sigma_{(res,lob)}$: desviación típica del riesgo de reservas (run-off de la PP del ramo)
- En el riesgo de reservas sólo se considera la experiencia del mercado

LOE	3 =	1	2	3	4	5	б	7	8	9	10	11	12
$\sigma_{(res,}$	lob)	12%	7%	10%	10%	15%	15%	10%	10%	10%	15%	15%	15%

- $\sigma_{(prem,lob)}$: desviación típica del riesgo de primas (ratio de perdidas de primas del ramo)
- En el riesgo de primas se considera tanto la experiencia del mercado como la experiencia propia de la entidad
- La desviación típica para primas del ramo se obtiene según la credibilidad entre las desviaciones del mercado y de la entidad

$$\sigma_{(\textit{prem}, lob)} = \sqrt{c_{\textit{lob}} \cdot \sigma_{(\textit{U}, \textit{prem}, lob)}^2 + \left(1 - c_{\textit{lob}}\right) \cdot \sigma_{(\textit{M}, \textit{prem}, lob)}^2}$$

- $\sigma_{(U,prem,lob)}$: desviación para primas del ramo según entidad
- $\sigma_{(M,prem,lob)}$: desviación para primas del ramo según mercado
- c_{lob} : factor de credibilidad del ramo

L	.OB =	1	2	3	4	5	6	7	8	9	10	11	12
σ	(Mprem, lob)	9%	9%	12.5%	10%	12.5%	15%	5%	7.5%	11%	15%	15%	15%

n_{lob}: número de años históricos (mínimo 3 y máximo 5, 10 ó 15, según el ramo):

LoB	Maximum n _{lob}
2, 4, 7, 8, 10	5
3, 9, 12	10
1, 5, 6, 11	15

C _{lob}		Number of historical years of data available (excluding the first 3 years after the line of business was first written)														
Maxi		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
mum value	15	0	0	0	0	0	0	0,64	0,67	0,69	0,71	0,73	0,75	0,76	0,78	0,79
of n _{lob}	10	0	0	0	0	0,64	0,69	0,72	0,74	0,76	0,79	•		,	-	-
	5	0	0	0,64	0,72	0,79	-	-	-	-	-	-	-	-	-	-

- LR_{lob}: ratio de pérdidas netas del ramo
- μ_{lob} : media (ponderada por primas) de ratios de pérdidas netas del ramo
- P_{lob} , $V_{(prem,lob)}$: suma de primas del ramo (sin considerar diversificación por áreas geográficas)

$$\sigma_{(U,prem,lob)} = \sqrt{\frac{1}{\left(n_{lob} - 1\right) \cdot V_{(prem,lob)}} \cdot \sum_{y} P_{lob}^{y} \cdot \left(LR_{lob}^{y} - \mu_{lob}\right)^{2}}$$

$$\mu_{lob} = \frac{\displaystyle\sum_{y} P_{lob}^{y} \cdot LR_{lob}^{y}}{\displaystyle\sum_{y} P_{lob}^{y}}$$

$$\text{Francisco Cuesta Aguilar - Página 73}$$

• σ_{lob} : desviación típica primas-reservas por ramo

$$\sigma_{lob} = \frac{\sqrt{\left(\sigma_{(prem,lob)} \cdot V_{(prem,lob)}\right)^{2} + \\ + \sigma_{(prem,lob)} \cdot \sigma_{(res,lob)} \cdot V_{(prem,lob)} \cdot V_{(res,lob)} + \\ + \left(\sigma_{(res,lob)} \cdot V_{(res,lob)}\right)^{2}}{V_{(prem,lob)} + V_{(res,lob)}}$$

- $V_{(res,lob)}$: suma de reservas del ramo (sin considerar diversificación por áreas geográficas)
- Se mantiene una correlación del 50% entre los riesgos de primas y reservas

Fase 2: Diversificación geográfica y medida de riesgo total

$$DIV_{pr,lob} = \frac{\sum_{j} \left(V_{(prem,j,lob)} + V_{(res,j,lob)}\right)^{2}}{\left[\sum_{j} \left(V_{(prem,j,lob)} + V_{(res,j,lob)}\right)\right]^{2}}$$

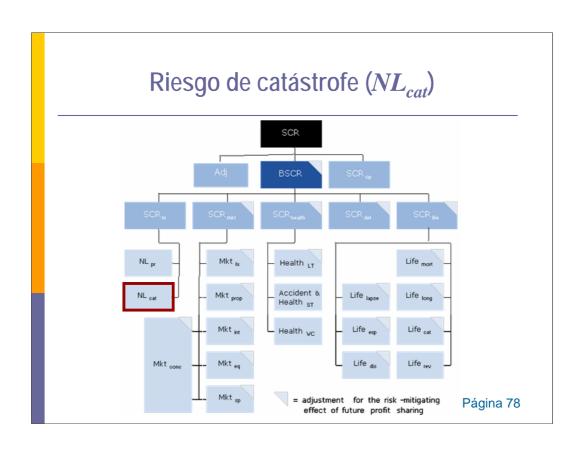
• V_{lob} : suma de primas y reservas del ramo (considerando diversificación por áreas geográficas):

$$V_{lob} = \left(V_{(prem,lob)} + V_{(res,lob)}\right) \cdot \left(0,75 + 0,25 \cdot DIV_{pr,lob}\right)$$

• *V*: suma de primas y reservas de todos los ramos:

$$V = \sum_{lob} V_{lob}$$

- Fase 3: Desviación total
- σ: desviación típica conjunta de primas-reservas:


$$\sigma = \sqrt{\frac{1}{V^2} \cdot \left[V_{lob} \cdot \sigma_{lob} \right] \cdot \left[CorrLob_{pr} \right] \cdot \left[V_{lob} \cdot \sigma_{lob} \right]}$$

• $CorrLob_{pr}$: matriz de correlaciones de ramos (para primas y reservas), de dimensión (12x12)

Matriz de correlaciones de ramos:

CorrLob	1	2	3	4	5	б	7	8	9	10	11	12
1: M (3 rd party)	1											
2: M (other)	0,5	1										
3: MAT	0,5	0,25	1									
4: Fire	0,25	0,25	0,25	1								
5: 3 rd party liab	0,5	0,25	0,25	0,25	1							
б: credit	0,25	0,25	0,25	0,25	0,5	1						
7: legal exp.	0,5	0,5	0,25	0,25	0,5	0,5	1					
8: assistance	0,25	0,5	0,5	0,5	0,25	0,25	0,25	1				
9: misc.	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	1			
10: reins. (prop)	0,25	0,25	0,25	0,5	0,25	0,25	0,25	0,5	0,25	1		
11: reins. (cas)	0,25	0,25	0,25	0,25	0,5	0,5	0,5	0,25	0,25	0,25	1	
12: reins. (MAT)	0.25	0.25	0.5	0.5	0.25	0.25	0.25	0.25	0.5	0.25	0.25	1

ágina 77

Riesgo de catástrofe (NL_{cat})

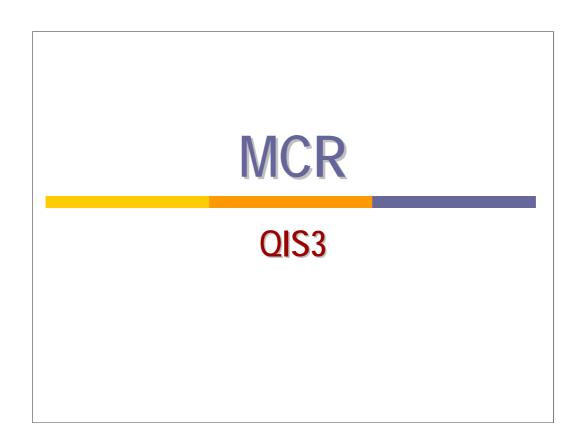
 Método 1: Fórmula estándar: cuando el supervisor nacional no tenga definidos escenarios regionales

$$NL_{CAT} = \sqrt{\frac{\sum_{t \neq 3,4,10,12} (c_t \cdot P_t)^2 + (c_3 \cdot P_3 + c_{12} \cdot P_{12})^2 + (c_4 \cdot P_4 + c_{10} \cdot P_{10})^2}$$

 P_{lob}: estimación de primas netas devengadas del ramo para el próximo ejercicio

LoB t	Factor c _t		
1. Motor, 3rd-party	0.15		
2. Motor, other	0.075		
3. MAT	0.50		
4. Fire	0.75		
5. 3rd-party liab	0.15		
6. Credit	0.60		
7. Legal exp.	0.02		
8. Assistance	0.02		
9. Misc.	0.25		
10. Reins (prop)	1.50		
11. Reins (cas)	0.50		
12. Reins (MAT)	1.50		

Riesgo de catástrofe (NL_{cat})


- Método 2: Escenarios regionales:
- Definidos por el supervisor regional
- Costes totales derivados de los diferentes escenarios para la determinación del requerimiento de capital:

$$NL_{CAT} = \sqrt{\sum_{i} CAT_{i}^{2}}$$

 Sólo se computan los costes de los escenarios que superan el 25% del coste del escenario que genera mayores pérdidas

Riesgo de catástrofe (NL_{cat})

- Método 3: Escenarios propios:
- Cuando los métodos anteriores no son representativos a su exposición al riesgo de catástrofe
- Definición según la clase de negocio, la concentración geográfica, y justificación
- Misma metodología del método anterior

Requerimiento de capital mínimo (MCR)

• Mínimos relativos:

$$MCR' = \min[\max(MCR; 0, 2 \cdot SCR); 0, 5 \cdot SCR]$$

- Mínimos absoluto (*AMCR*):
 - *AMCR_{NL}*: 1M€ (también para reaseguradoras puras)
 - *AMCR_{Life}*: 2M€

Riesgo de no vida (MCR_{NL})

$$MCR_{NL} = \sum_{lob} \max(\alpha_{lob} \cdot TP_{lob}; \beta_{lob} \cdot P_{lob})$$

- TP_{lob}: BE de PP NV neta del ramo (min 0)
- P_{lob}: primas devengadas NV netas del ramo en año anterior (min 0)

Riesgo de no vida (MCR_{NL})

• α_{lob} , β_{lob} : coeficientes del ramo:

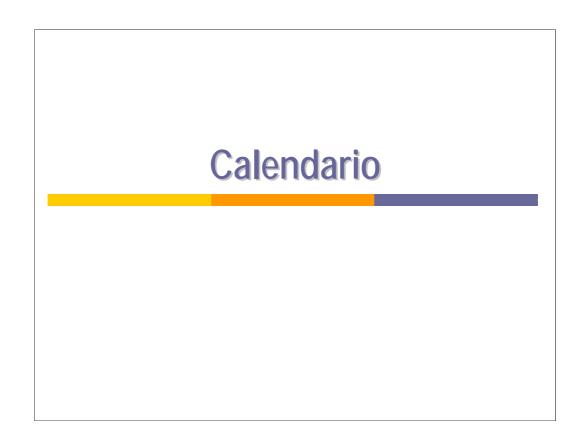
LoB	name of LoB	a_{lob}	β_{lob}
1	A&H – workers' compensation	0.13	0.09
2	A&H – health insurance	0.10	0.04
3	A&H – others/default	0.20	0.06
4	Motor, third-party liability	0.16	0.12
5	Motor, other classes	0.09	0.12
6	Marine, aviation, transport	0.13	0.16
7	Fire and other property damage	0.13	0.13
8	Third-party liability	0.20	0.16
9	Credit and suretyship	0.20	0.20
10	Legal expenses	0.13	0.06
11	Assistance	0.13	0.10
12	Miscellaneous	0.13	0.14
13	NP reinsurance — property	0.20	0.20
14	NP reinsurance – casualty	0.20	0.20
15	NP reinsurance – MAT	0.20	0.20

- Página 85

Riesgo de vida (MCR_{Life})

$$\begin{split} MCR_{Life} &= \max \begin{bmatrix} 0.035 \cdot TP_{WP_guaranteed} - 0.09 \cdot TP_{WP_bonus}; \\ 0.015 \cdot TP_{WP_guaranteed} \end{bmatrix} + \\ &+ \sum_{i} \alpha_{i} \cdot TP_{i} + 0.25 \cdot Exp_{ul}^{*} + \sum_{j} \beta_{j} \cdot CAR_{j} \end{split}$$

- $TP_{WP_guaranteed}$: BE de PT para PB garantizada TP_{WP_bonus} : BE de PT para PB discrecional TP_i : BE de PT neta (min 0) por segmento


- Exp_{ul} : gastos de administración anuales en unit-linked
- CAR_i: capital en riesgo neto por segmento

Riesgo de vida (MCR_{life})

• α,β : coeficientes del segmento:

	Risk driver				
1st level segment	Death or Savings	Survivorship or Morbidity			
Unit-linked	0.005	0.0175			
Non-profit	0.01	0.035			
Reinsurance accepted	see below	see below			

J	Outstanding term of contract	β_i
1	5 years or more	0.00125
2	3 to 5 years	0.0009
3	3 years or less	0.0005

Calendario QIS4

- Competencia de la Comisión a propuesta de CEIOPS
- Publicadas las especificaciones técnicas el 31-3-2008 (hojas de cálculo en mayo)
- Fecha límite de presentación: 7-7-2008 (grupos 31-7-2008)
- El 19-11-2008 se publicará el resultado del QIS4 a nivel europeo